757 research outputs found

    Hypermatter in chiral field theory

    Full text link
    We investigate the properties of hadronic matter and nuclei be means of a generalized SU(3)×SU(3)SU(3)\times SU(3) σ\sigma model with broken scale invariance. In mean-field approximation, vector and scalar interactions yield a saturating nuclear equation of state. Finite nuclei can be reasonably described, too. The condensates and the effective baryon masses at finite baryon density and temperature are discussed.Comment: uses IOP style, to be published in Journal of Physics, Proceedings of the International Symposium on Strangeness in Quark Matter 1997, April 14-18, Thera (Santorini), Hella

    Strong coupling in extended Horava-Lifshitz gravity

    Get PDF
    An extension of Horava-Lifshitz gravity was recently proposed in order to address the pathological behavior of the scalar mode all previous versions of the theory exhibit. We show that even in this new extension the strong coupling persists, casting doubts on whether such a model can constitute an interesting alternative to general relativity (GR).Comment: 4 pages; v2: minor changes and references added; v3: clarification regarding the strong coupling scale added; v4: version accepted for publication in PLB, addresses issues raised in arXiv:0912.055

    An improved multi-agent simulation methodology for modelling and evaluating wireless communication systems resource allocation algorithms

    Get PDF
    Multi-Agent Systems (MAS) constitute a well known approach in modelling dynamical real world systems. Recently, this technology has been applied to Wireless Communication Systems (WCS), where efficient resource allocation is a primary goal, for modelling the physical entities involved, like Base Stations (BS), service providers and network operators. This paper presents a novel approach in applying MAS methodology to WCS resource allocation by modelling more abstract entities involved in WCS operation, and especially the concurrent network procedures (services). Due to the concurrent nature of a WCS, MAS technology presents a suitable modelling solution. Services such as new call admission, handoff, user movement and call termination are independent to one another and may occur at the same time for many different users in the network. Thus, the required network procedures for supporting the above services act autonomously, interact with the network environment (gather information such as interference conditions), take decisions (e.g. call establishment), etc, and can be modelled as agents. Based on this novel simulation approach, the agent cooperation in terms of negotiation and agreement becomes a critical issue. To this end, two negotiation strategies are presented and evaluated in this research effort and among them the distributed negotiation and communication scheme between network agents is presented to be highly efficient in terms of network performance. The multi-agent concept adapted to the concurrent nature of large scale WCS is, also, discussed in this paper

    Chiral model for dense, hot and strange hadronic matter

    Get PDF
    An extended chiral SU(3) model is applied to the description of dense, hot and strange hadronic matter. The degrees of freedom are the baryon octet and decuplet and the spin-0 and spin-1 meson multiplets. The parameters of the model are fitted to the hadron masses in vacumm, infinite nuclear matter properties and soft pion theorems. At high densities the appearance of density isomers cannot be ruled out and extrapolation to finite temperature exhibits a first order phase transition at T≈150MeVT \approx 150 MeV. The predicted dropping baryon masses lead to drastically changed particle ratios compared to ideal gas calculations.Comment: 4 pages, 3 figures, Contribution to the Proceedings of the 15th Particles and Nuclei International Conference (PANIC 99), Uppsala, Sweden, June 10-16, 199

    Service-oriented computing: concepts, characteristics and directions

    Get PDF
    Service-Oriented Computing (SOC) is the computing paradigm that utilizes services as fundamental elements for developing applications/solutions. To build the service model, SOC relies on the Service Oriented Architecture (SOA), which is a way of reorganizing software applications and infrastructure into a set of interacting services. However, the basic SOA does not address overarching concerns such as management, service orchestration, service transaction management and coordination, security, and other concerns that apply to all components in a services architecture. In this paper we introduce an Extended Service Oriented Architecture that provides separate tiers for composing and coordinating services and for managing services in an open marketplace by employing grid services.

    Neutron star properties in a chiral SU(3) model

    Full text link
    We investigate various properties of neutron star matter within an effective chiral SU(3)L×SU(3)RSU(3)_L \times SU(3)_R model. The predictions of this model are compared with a Walecka-type model. It is demonstrated that the importance of hyperon degrees are strongly depending on the interaction used, even if the equation of state near saturation density is nearly the same in both models. While the Walecka-type model predicts a strange star core with strangeness fraction fS≈4/3f_S \approx 4/3, the chiral model allows only for fS≈1/3f_S \approx 1/3 and predicts that Σ0\Sigma^0, Σ+\Sigma^+ and Ξ0\Xi^0 will not exist in star, in contrast to the Walecka-type model.Comment: 13 pages, Revtex, 5 figs include

    Modelling biofilm formation of Salmonella enterica ser. Newport as a function of pH and water activity

    Get PDF
    The effect of pH and water activity (aw) on the formation of biofilm by Salmonella enterica ser. Newport, previously identified as a strong biofilm producer, was assessed. Biofilm formation was evaluated in tryptone soy broth at 37 C and at different combinations of pH (3.3e7.8) and aw (0.894e0.997). In total, 540 biofilm formation tests in 108 pH and aw combinations were carried out in polystyrene microtiter plates using crystal violet staining and optical density (OD; 580 nm) measurements. Since the individual effects of pH and aw on biofilm formation had a similar pattern to that observed for microbial growth rate, cardinal parameter models (CPMs) were used to describe these effects. CPMs described successfully the effects of these two environmental parameters, with the estimated cardinal values of pHmin, pHopt, pHmax, awmin and awopt being 3.58, 6.02, 9.71, 0.894 and 0.994, respectively. The CPMs assumption of the multiplicative inhibitory effect of environmental factors was validated in the case of biofilm formation using additional independent data (i.e. 430 OD data at 86 different combinations of pH and aw). The validation results showed a good agreement (r2 Π0.938) between observed and predicted OD with no systematic error. In the second part of this study, a probabilistic model predicting the pathogen's biofilm formation boundaries was developed, and the degree of agreement between predicted probabilities and observations was as high as 99.8%. Hence, the effect of environmental parameters on biofilm formation can be quantitatively expressed using mathematical models, with the latter models, in turn, providing useful information for biofilm control in food industry environments

    Hadrons in Dense Resonance-Matter: A Chiral SU(3) Approach

    Get PDF
    A nonlinear chiral SU(3) approach including the spin 3/2 decuplet is developed to describe dense matter. The coupling constants of the baryon resonances to the scalar mesons are determined from the decuplet vacuum masses and SU(3) symmetry relations. Different methods of mass generation show significant differences in the properties of the spin-3/2 particles and in the nuclear equation of state.Comment: 28 pages, 9 figure

    Compact Stars - How Exotic Can They Be?

    Full text link
    Strong interaction physics under extreme conditions of high temperature and/or density is of central interest in modern nuclear physics for experimentalists and theorists alike. In order to investigate such systems, model approaches that include hadrons and quarks in a unified approach, will be discussed. Special attention will be given to high-density matter as it occurs in neutron stars. Given the current observational limits for neutron star masses, the properties of hyperonic and hybrid stars will be determined. In this context especially the question of the extent, to which exotic particles like hyperons and quarks affect star masses, will be discussed.Comment: Contributon to conference "Nuclear Physics: Present and Future", held in Boppard (Germany), May 201
    • 

    corecore